On possibilistic modal logics defined over MTL-chains

نویسنده

  • Franco Montagna
چکیده

In this paper we revisit a 1994 paper by Hájek et al. where a modal logic over a finitely-valued Lukasiewicz logic is defined to capture possibilistic reasoning. In this paper we go further in two aspects: first, we generalize the approach in the sense of considering modal logics over an arbitrary finite MTL-chain, and second, we consider a different possibilistic semantics for the necessity and possibility modal operators. The main result is a completeness proof that exploits similar techniques to the ones involved in Hájek et al.?s previous work. URL http://link.springer.com/chapter/10.1007/978-3-319-06233-4_11 [8] Source URL: https://www.iiia.csic.es/en/node/54254 Links [1] https://www.iiia.csic.es/en/staff/f%C3%A9lix-bou [2] https://www.iiia.csic.es/en/staff/francesc-esteva [3] https://www.iiia.csic.es/en/staff/llu%C3%ADs-godo [4] https://www.iiia.csic.es/en/staff/franco-montagna [5] https://www.iiia.csic.es/en/bibliography?f[keyword]=458 [6] https://www.iiia.csic.es/en/bibliography?f[keyword]=459 [7] https://www.iiia.csic.es/en/bibliography?f[keyword]=457 [8] http://link.springer.com/chapter/10.1007/978-3-319-06233-4_11

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On possibilistic modal logics defined over MTL-chains

In this paper we revisit a 1994 paper by Hájek et al. where a modal logic over a finitely-valued Łukasiewicz logic is defined to capture possibilistic reasoning. In this paper we go further in two aspects: first, we generalize the approach in the sense of considering modal logics over an arbitrary finite MTL-chain, and second, we consider a different possibilistic semantics for the necessity an...

متن کامل

On possibilistic modal logics defined over MTL-chains

In this paper we revisit a 1994 paper by Hájek et al. where a modal logic over a finitely-valued Lukasiewicz logic is defined to capture possibilistic reasoning. In this paper we go further in two aspects: first, we generalize the approach in the sense of considering modal logics over an arbitrary finite MTL-chain, and second, we consider a different possibilistic semantics for the necessity an...

متن کامل

A Hennessy-Milner Property for Many-Valued Modal Logics

A Hennessy-Milner property, relating modal equivalence and bisimulations, is defined for many-valued modal logics that combine a local semantics based on a complete MTL-chain (a linearly ordered commutative integral residuated lattice) with crisp Kripke frames. A necessary and sufficient algebraic condition is then provided for the class of image-finite models of these logics to admit the Henne...

متن کامل

On the Logical Formalization of Possibilistic Counterparts of States over n-Valued Lukasiewicz Events

Possibility and necessity measures are commonly defined over Boolean algebras. This work consider a generalization of these kinds of measures over MV-algebras as a possibilistic counterpart of the (probabilistic) notion of state on MV-algebras. Two classes of possibilistic states over MV-algebras of functions are characterized in terms of (generalized) Sugeno integrals. For reasoning about thes...

متن کامل

On the Logical Formalization of Possibilistic Counterparts of States over n-valued Łukasiewicz Events

Possibility and necessity measures are commonly defined over Boolean algebras. This work considers a generalization of these kinds of measures over MV-algebras as a possibilistic counterpart of the (probabilistic) notion of state on MV-algebras. Two classes of possibilistic states over MV-algebras of functions are characterized in terms of (generalized) Sugeno integrals. For reasoning about the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017